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Abstract 

Mechanistic models for ion-exchange chromatography of proteins are well-established 

and a broad consensus exists on most aspects of the detailed mathematical and physical 

description. A variety of specializations of these models can typically capture the general 

locations of elution peaks, but discrepancies are often observed in peak position and 

shape, especially if the column load level is in the non-linear range. These discrepancies 

may prevent the use of models for high-fidelity predictive applications such as process 

characterization and development of high-purity and -productivity process steps. Our 

objective is to develop a sufficiently robust mechanistic framework to make both 

conventional and anomalous phenomena more readily predictable using model 

parameters that can be evaluated based on independent measurements or well-accepted 

correlations. This work demonstrates the implementation of this approach for industry-

relevant case studies using both a model protein, lysozyme, and biopharmaceutical 

product monoclonal antibodies, using cation-exchange resins with a variety of 

architectures (SP Sepharose FF, Fractogel EMD SO3
-, Capto S and Toyopearl SP650M). 

The modeling employs the general rate model with the extension of the surface diffusivity 

to be variable, as a function of ionic strength or binding affinity. A colloidal isotherm that 

accounts for protein-surface and protein-protein interactions independently was used, 

with each characterized by a parameter determined as a function of ionic strength and 

pH. Both of these isotherm parameters, along with the variable surface diffusivity, were 

successfully estimated using breakthrough data at different ionic strengths and pH. The 

model developed was used to predict overloads and elution curves with high accuracy for 

a wide variety of gradients and different flow rates, and protein loads. The in-silico 

methodology used in this work for parameter estimation, along with a minimal amount of 

experimental data, can help the industry adopt model-based optimization and control of 

preparative ion-exchange chromatography with high accuracy.  
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1. Introduction 

The essential elements of modeling chromatographic behavior have been known for 

many decades but the use of modeling in process development has grown appreciably 

only recently, aided by the availability of efficient and user-friendly chromatographic 

computational software [1]. Developing ion-exchange chromatography (IEC) models for 

proteins, in particular monoclonal antibodies (mAbs), is a long-standing challenge due to 

the complex nature of interactions on the charged surface [2-4]. Although IEC models 

have improved significantly and retention times can be well predicted, an accurate 

description of peak shapes for high loads during salt gradient elution is elusive [5]. Correct 

prediction of such protein elution behavior in IEC depends on an accurate description of 

both transport and the adsorption isotherm. Transport models such as the general rate 

model are well established, incorporating details of mass transfer within the pore space 

as well as surface diffusion [6]. The resulting partial differential equations are solved 

numerically with high accuracy and short run times using modern code libraries [7].  

Numerous descriptions of protein partitioning between the bulk and the solid surface of 

the resin are available in the literature. Although most are based on physical models, only 

a few are based on detailed descriptions of interactions at the molecular level that are 

plausibly appropriate for proteins. The models most widely-used for ion-exchange 

systems are the Langmuir and steric mass action (SMA) models [8-10], both of which 

assume noninteracting solutes arranged in a monolayer on a charged surface. The 

Langmuir model does not explicitly account for salt effects and therefore modified or 

empirical relations are incorporated when it is used to describe gradient elution for ion-

exchange chromatography [11,12]. The SMA model is explicit in salt concentration and 

its variation with pH has also been accounted for [13]. Both the Langmuir and SMA 

models capture the normal shape of typical protein adsorption isotherms, but the physical 

assumptions underlying the two models may not be fully justiffied. One discrepancy is 

that adsorbed protein molecules are likely to interact with neighboring solutes when the 

resin is loaded close to saturation in preparative chromatography [14]; this may give rise 

to deviations from the observed isotherms [15]. An SMA model modified to allow for 
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multistate binding has also been used but without any direct experimental evidence [16]. 

To account for lateral protein-protein interactions, various colloidal models have been 

used [17-20] that may provide a more detailed description of actual physical phenomena 

that apply, in particular, at high-load conditions [21].  Other models that have been used 

include an empirical isotherm fitted directly to adsorption measurements but without a 

physical interpretation for the representation [22]. 

Regardless of the model details, parameter estimation from column data is a challenge 

because of the intrinsic convolution of transport and adsorption. In principle, 

mechanistically-meaningful models pose a less difficult challenge for estimating the 

model parameters as some of the parameters can be calculated using theoretical 

considerations like the amino acid sequence and dissociation information [23] but such 

models are generally not yet sufficiently reliable to provide the requisite predictive detail. 

Charge screening due to the presence of ions can be calculated from colloidal principles 

in terms of the Debye parameter [24] but this requires information on the molecular 

structure of the adlayer that is rarely available.  

It is therefore not always possible to calculate parameters a priori, and some or all of them 

are fitted to measured isotherms [18] or to the elution curve (inverse fit method) [11,12, 

24, 25]. The most direct method to measure the isotherm is a conventional static method 

wherein the concentration of solute in the mobile phase is measured after batch 

equilibration and the concentration in the stationary phase is determined by mass balance 

[26]. Other techniques use the Yamamoto method, which uses on-column gradient elution 

data [27, 28]. The binding affinity, which determines the initial slope of the isotherm, is 

also estimated using moment calculations for an isocratic pulse or breakthrough load on-

column [29,30]. However, these methods do not allow simultaneous estimation of the 

transport parameters because there are not enough degrees of freedom in the elution 

curve to estimate binding and transport parameters separately. Pore and surface diffusion 

are usually slow enough to be rate-limiting and hence impact the overall transport [31,32],  

while "film" mass transfer is generally fast in IEC, allowing some latitude in specifying the 

parameter value. 
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The phenomenon of pore diffusion in a resin bead is well established, but surface 

diffusion, also sometimes referred to as solid or homogeneous diffusion, has been less 

widely studied. Measurements of homogeneous diffusion [33-36] have usually been 

performed for protein uptake and not for protein elution, where the changing salt 

concentration during IEC gradient elution complicates the model.  

Given the significance of transport parameters, especially for proteins that are larger in 

size, such as mAbs, along with the uncertainties inherent in currently-available isotherm 

models, defining best practices for column modeling should necessarily focus on detailed 

treatments. Simpler models such as lumped-rate models or inflexible traditional models 

of isotherms are unlikely to be adequate to predict the peak shape during elution, 

especially for saturated loading. In this work an isotherm based on a colloidal model, 

which includes protein-protein and protein-surface interactions, has been implemented 

along with the general rate model, which includes both pore and surface diffusion (the 

latter as a function of ionic strength or binding affinity). Estimation of parameters was 

performed from overloaded conditions of protein on the column, which enabled the 

simultaneous estimation of the surface diffusivity and key isotherm parameters.  

 

2. Materials and methods 

2.1 Chemicals and buffers 

All chemicals were purchased from Fisher Scientific (Waltham, MA) and were used after 

dissolution in deionized water and filtration through 0.2 µm filters. Buffer stock solutions 

(0.5 M monobasic sodium phosphate, 0.5 M disodium hydrogen phosphate, 1 M sodium 

acetate, and 1 M acetic acid) were prepared at room temperature (23 ± 2 °C). Acidic and 

basic buffer stock solutions were mixed in volumes as calculated from the Henderson-

Hasselbalch equation to attain the desired pH and dilutions were made to obtain the 

desired ionic strength. Elution buffers at a desired ionic strength were prepared by adding 

3 M sodium chloride stock solution to the equilibration buffers.  

 

2.2 Protein sample preparation 
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Lysozyme from chicken egg (molecular weight 14.3 kDa) was dissolved in sodium 

phosphate buffer at pH 6.5, with salt concentrations in the range 20 mM – 500 mM. The 

protein concentration was in the range 4.0 – 5.0 mg/mL for the different samples. 

The mAb used was obtained from Amgen’s manufacturing facility (Thousand Oaks, CA). 

The formulated mAb (160 mg/mL) was stored at –80 °C and was thawed and diluted 

immediately before use to 25 mg/mL and buffer-exchanged into sodium acetate buffer. A 

purified native variant of the mAb was obtained using a displacement method on Poros 

HS resin packed in a 36 mL column (three XK 16/20 columns from GE Healthcare, 

Uppsala, Sweden, of bed height 6 cm each, used in series), as described previously [37].   

 

2.3 Chromatography runs  

The resins SP Sepharose FF, Capto S (GE Healthcare, Uppsala, Sweden), Fractogel 

SO3
- (MilliporeSigma, Germany) and Toyopearl SP 650M (Tosoh Biosciences, King of 

Prussia, PA) were slurry-packed in columns of dimension 0.35 x 5 cm (Omnifit, Diba 

Industries Inc., CT, USA). An Äkta Pure chromatography system with a UV detector, 

conductivity meter, pH meter, and fraction collector was used for all the experiments. 

Protein samples were injected using a GE 50 mL Superloop if the sample volume was 

more than 500 µL. Chromatography was performed in two modes, breakthrough isocratic 

and linear gradient elution, at flow rates of 85-300 cm/h. The chromatography runs 

required two buffers, A and B. Buffer A was phosphate (for pH > 6.2) or acetate buffer 

(for pH < 6.2) and buffer B was buffer A adjusted to the desired ionic strength using 3 M 

sodium chloride. Buffer A in combination with varying percentages (0 - 100) of B was 

used for equilibration and washing during the chromatography runs.  

The mAb was buffer-exchanged using Sephadex G-25 resin (GE Healthcare, Uppsala, 

Sweden) into the equilibration buffer prior to sample loading. The column was equilibrated 

with at least 5 column volumes (CVs) of buffer to obtain the desired pH and conductivity. 

The load volume for pulse experiments was 25 µL. For breakthrough experiments, which 

were used for estimating model parameters, the sample was loaded until the output 

concentration was close to the input concentration. After loading, the column was washed 
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with the equilibration buffer until a stable baseline UV reading was obtained (A280). Elution 

was performed in a salt gradient by combination of the equilibrium buffer with the B buffer. 

The column was regenerated and sanitized with 1 M NaCl and 0.5 M NaOH, respectively, 

after every five runs.  

Gradient experiments followed a procedure similar to that described above except that 

the protein load was kept below the saturated capacity of the packed column. Elution was 

performed using salt gradients with different slopes (20, 30 or 40 CVs) prepared with B 

buffer as required for the various experiments. The data from these experiments were 

used for model validation aimed at various loading and elution conditions. 

 

 

2.4 System and column calibration 

2.4.1 UV detector 

Samples of concentration 0.05 mg/mL to 25 mg/mL were prepared in buffer A and injected 

into the UV absorbance detector on the Äkta system. Measurements were made at 295 

nm instead of 280 nm to obtain a broader linear range. The UV response measured in 

mAU was plotted against the concentration of protein injected. A second-order polynomial 

was fitted to the calibration curve to include the higher range near saturation of the UV 

detector. The concentration in mM of the sample eluted from the column was determined 

from the detector UV trace and the calibration curve.  

 

2.4.2 Conductivity meter 

Buffer A with varying percentages of buffer B was injected into the conductivity meter and 

a calibration curve was prepared for ionic strength (mM) versus conductivity (mS/cm). 

The conductivity trace was used to verify the ionic concentration at the column outlet 

during chromatography runs.  

 

2.4.3 System hold-up volume  

The holdup volumes in the tubing between the injection loop and the UV detector and 

between the gradient mixer and the UV detector were calculated by injecting dextran 
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(3000 kDa) without a column connected to the Äkta system. The retention time of the 

peak maximum was used to estimate the retention volume of the tubing.  

 

2.4.4 Column interstitial porosity 

The column interstitial porosity was determined based on the retention of dextran (3000 

kDa). The retention time of the peak maximum was used to estimate the retention volume, 

and hence the interstitial porosity was calculated. The resin bead pore porosity was taken 

from the literature [38].  

 

2.4.5 Column dispersion coefficient 

The column dispersion coefficient was estimated from the peak shape of the protein under 

non-binding conditions (500 mM salt) on the column. A dispersion coefficient  of 3.9 x 10-

7 m2/s was obtained by fitting a column model to a pulse peak shape using column 

simulations in CADET (section 2.7). The film mass-transfer coefficient was not transport-

limiting and hence was set at 10-5 m/s for all the simulations [39]. 

 

2.5 General rate model   

The general rate model was used as an adsorption and mass-transfer model for IEC.  For 

a column of length L filled with spherical particles of radius rp, the mass balances for the 

interstitial volume and porous beads respectively can be expressed as [6] 

𝜕𝑐𝑖

𝜕𝑡
= −𝑢

𝜕𝑐𝑖

𝜕𝑧
+ 𝐷𝑎𝑥

𝜕2𝑐𝑖

𝜕𝑧2 −
1−𝜖𝑐

𝜖𝑐

3

𝑟𝑝
𝑘𝑓𝑖𝑙𝑚,𝑖[𝑐𝑖 − 𝑐𝑝𝑖(⋅,⋅, 𝑟𝑝)]  for 𝑡 ≥ 0, 𝑧 ∈ [0, 𝐿]  (1) 

𝜕𝑐𝑝𝑖

𝜕𝑡
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𝜕2𝑐𝑝𝑖

𝜕𝑟2
+
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𝜕𝑐𝑝𝑖

𝜕𝑟
) + 𝐷𝑠𝑖

1−𝜖𝑝

𝜖𝑝
(

𝜕2𝑞𝑖

𝜕𝑟2
+

2

𝑟

𝜕𝑞𝑖

𝜕𝑟
) −

1−𝜖𝑝

𝜖𝑝

𝜕𝑞𝑖

𝜕𝑡
  for 𝑡 ≥ 0, 𝑧 ∈ [0, 𝐿] and 𝑟 ∈ [0, 𝑟𝑝]

            (2) 

where 𝑐𝑖 denotes the concentration of solute i in the interstitial space and 𝑐𝑝𝑖 and 𝑞𝑖 the 

mobile- and solid-phase concentrations respectively of component i in the beads. The 

external porosity is given by 𝜖𝑐 and the internal porosity by 𝜖𝑝, 𝑢 denotes the interstitial 

velocity, 𝐷𝑎𝑥 the dispersion coefficient, 𝑘𝑓𝑖𝑙𝑚,𝑖 the film mass-transfer coefficient, 𝐷𝑝𝑖 the 
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pore diffusion coefficient and 𝐷𝑠𝑖 the surface diffusion coefficient. 𝐷𝑠𝑖 was treated as a 

function of the ionic strength in the bulk 

 𝐷𝑠𝑖 = 𝐷𝑠0𝑖𝑓(𝐼𝑆)           (3) 

where 𝐷𝑠0𝑖 is a constant. The general rate model was coupled with the colloidal isotherm 

(section 2.6) to obtain the solution for the concentration profile at the end of the column, 

with the rate of adsorption given by  

𝑑𝑞𝑖

𝑑𝑡
=  𝑘𝑘𝑖𝑛 (𝑐𝑝𝑖 − 𝑐𝑝𝑖

∗ )          (4) 

where kkin is the adsorption rate constant and cpi
* is the concentration of protein in the pore space 

in equilibrium with qi. The kkin value was set to a high value (> 108 s-1)  for a rapid equilibrium 

model. 

 

2.6 Colloidal isotherm model  

For the colloidal isotherm model, the adsorbed protein molecules (concentration qi) are 

assumed to be evenly distributed in a hexagonal arrangement on the surface at 

equilibrium, with the coverage varied via adjustment of the lattice size [17]. Protein-

surface interactions are characterized by the equilibrium constant Ke, which gives rise to 

a linear equilibrium relation between 𝑐𝑝𝑖
∗  and the protein concentration qi in the bulk 

phase in the absence of lateral protein-protein interactions. At higher coverages such 

protein-protein interactions modulate the surface coverage via a protein-protein 

interaction parameter Bpp, a screening parameter κ, the protein radius a and the protein-

protein spacing R. The colloidal model for a single component can then be written as 

[17] 

𝑞𝑖 =  𝐾𝑒𝑐𝑝𝑖
∗ 𝑒𝑥𝑝 (− 

3

2

𝐵𝑝𝑝𝑎

𝑅
𝑒𝑥𝑝⌈−𝜅(𝑅 − 2𝑎)⌉(3 + 𝜅𝑅))     (5) 

 

Since the protein-protein interactions characterized by Bpp are long-ranged, they are 

assumed to be primarily electrostatic, with the range of interactions determined by the 

screening parameter, κ. The dependence of the model on solution conditions was 
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modulated by adjusting the parameters κ, Ke, and Bpp  as a function of ionic strength and 

pH. 

 

2.7 Model simulations  

Simulations were performed using a customized version of CADET (Chromatography 

Analysis and Design Toolkit), which included the colloidal isotherm and variable surface 

diffusivity, made available by Forschungszentrum Jülich, Germany [40]. The 

discretization was set to 150 axial nodes for a column of length 5 cm. The bead-level 

discretization was set to 100 radial nodes. The absolute tolerance was set to 10-8 and the 

relative tolerance to 10-6. 

 

2.7.1 Parameter estimation from inverse fit methods 

Isotherm parameters were estimated by fitting simulation results to protein breakthrough 

data acquired in column experiments under isocratic conditions. The data points 

considered in calculating the residuals between the simulated and experimental data 

(normalized by input concentration) were for the protein loading and column wash stages 

rather than for elution experiments. Initial estimates of parameter values were obtained 

manually based on heuristic observations of the breakthrough shape. The initial guesses 

were then refined by minimizing the residuals using the MATLAB lsqnonlin function using 

the inverse fit method [11].  

A variant of this approach used a weighting method in which the calculation of residuals 

was modified by including weighting values for ranges of data points on the breakthrough 

curve based on their sensitivities to specific model parameters. This method is based on 

the analysis of breakthrough curves discussed in detail in the Results and Discussion 

section. The confidence intervals for parameters were estimated using diagonal values 

of the covariance matrix obtained from the Jacobian and the variance of residuals from 

the output of the lsqnonlin function in Matlab. The significance levels were kept at 0.05 

and the number of degrees of freedom was the number of iterations in the lsqnonlin 

optimization. 
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2.8 Estimation of isotherm parameters 

The isotherm equation (5) incorporates several parameters that must be determined 

independently. The protein spacing, R, is premised on assuming a hexagonal monolayer 

arrangement [26], from which 

𝑅 = (
2

√3 (𝑞𝑖𝑁𝐴)

𝜑

)

1

2

          (6) 

where qi is the adsorbed protein concentration in volumetric units (mM), φ is the phase 

ratio and NA is Avogadro's number.  

The phase ratio can be expressed in various different forms and units. For adsorption on 

a conventional adsorbent, i.e., on an extended surface, the phase ratio φ is conveniently 

defined as an accessible surface area per unit volume of the mobile phase [38]. The 

phase ratio used here, denoted 𝜑, is different to keep it consistent with the general rate 

model implemented in CADET. It is therefore defined as the accessible surface area per 

unit volume of solid. The phase ratio can be estimated from inverse size-exclusion 

chromatography (iSEC) and can be converted to 𝜑 using the value of the total porosity, 

t:  

φ = φ(1- ɛt)/(ɛt)           (7) 

The phase ratio measured using iSEC for Fractogel, a tentacular resin, will not be 

representative due to the nature of the sorbent, which lacks a well-defined surface area. 

For this case the phase ratio was estimated from Eq. 6 using the assumption that at the 

maximum binding capacity qi,max, the protein-protein distance R has a minimum at 2a for 

monolayer adsorption, where a is the radius of the protein, the approximate value of which 

can be taken from the literature [41]:  

φ = 2√3 a2 qi, max NA          (8) 

For this situation qi,max was calculated from the amount of bound protein determined from 

the column breakthrough data.  
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The screening or Debye parameter () for protein-protein interactions was estimated 

assuming the colloidal behavior of protein in an electrolyte solution of a symmetric 

monovalent salt (NaCl). The total ionic strength C0 was accounted for due to the presence 

of salt only, independent of the presence of protein, in the bulk phase. The functional 

relationship of 𝜅 with ionic strength takes the form 

 𝜅 =  𝜅0 (𝐶0)0.5          (9) 

where 𝜅0  at 298 K is 1.04x108 m-1. 

The other two isotherm parameters, Ke and Bpp, were not obtained from theoretical 

considerations but were determined empirically by fitting each isocratic breakthrough 

curve individually at constant salt and protein concentration. The global ionic strength 

dependence of Ke and Bpp was then obtained by fitting a three-parameter power law (k4, 

b4  = 0) or exponential function (k2, b2  = 0) to the individual estimated values of total ionic 

strength : 

ln Ke = k1𝐶0
- k2 + k3 exp(𝑘4𝐶0)        (10) 

Bpp = b1𝐶0
b2 + b3 exp(𝑏4𝐶0)        (11) 

where k1, k2, k3, k4, b1 b2, b3, and b4 are fitting constants. 

 

2.9 Estimation of transport parameters 

The external mass transfer coefficient kfilm,i is known to have the smallest effect on column 

behavior in ion-exchange chromatography of proteins [39], so it was assumed in this work 

to have a relatively high value, 10-5 m/s. 

The pore diffusivity Dp inside the particle was calculated approximately from [42] 

𝐷𝑝 =
𝜀𝑝𝜔

𝜏
𝐷0           (12) 

where D0 is the free-solution diffusivity, 𝜀𝑝 is the accessible pore porosity, 𝜔 is the 

hindrance coefficient and 𝜏 is the tortuosity. The hindrance coefficient was set to 1 
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because the resins used here had mean pore sizes significantly larger than the protein 

dimensions, and the tortuosity was set to 3, recognizing the typical range of tortuosity of 

2-6 [43]. This initial approximation of Dp was further fine-tuned by fitting to the 

breakthrough data. 

The surface diffusivity was estimated using the breakthrough data as outlined in Results 

and Discussion. 

 

3. Results and discussion 

3.1 Peak shapes for different systems 

The shape of the elution peak depends strongly on the protein load on the column and 

may deviate appreciably from the near-Gaussian shape expected at low loads. Whether 

a load is considered low or high can vary with the resin and the protein and depends on 

the resin dynamic capacity, which in turn depends in part on the protein binding affinity 

and on resin structural and transport properties. The experimentally-observed gradient 

elution behavior of lysozyme, cytochrome c, and a mAb with increasing load is shown in 

Fig. 1. In general, as the load increases, elution is expected to start earlier, so the peak 

spread should be leftward, with a close approximation to a Gaussian peak shape. This is 

observed for the small protein lysozyme on SP Sepharose FF (Fig. 1A) but anomalies are 

observed for other cases. In the case of the mAb, although the peaks are symmetric and 

near-Gaussian, the peak spread is both leftward and rightward with increasing load (Fig. 

1B and C). Lysozyme on Capto SP ImpRes produces a leftward spread but with a kink at 

saturated loading (Fig. 1D). In more atypical observations asymmetric peaks (forward and 

backward tilt) are observed for cytochrome c and lysozyme on Fractogel SO3
- (Fig. 1E 

and F).  

The shape of the peak is likely related to the isotherm shape and to how it changes with 

ionic strength [1]. Although the peak spread also depends on the isotherm behavior, it 

may be related more to the transport in the pore space, especially for the large mAb. This 

could be due to limitations in either pore or surface diffusion or both. When the mAb was 

loaded at a higher ionic strength (Fig. 1C), only a leftward spread was seen, suggesting 
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that the effect is related to the binding affinity and hence possibly to surface diffusion. 

These results, taken together, emphasize the importance for accurate prediction of 

chromatographic behavior of accurately determining both the isotherm and transport 

parameters. 

 

3.2 Analysis of breakthrough curves 

Although the shapes of the elution peaks in Fig. 1 may reflect effects of surface diffusion, 

such effects can be inferred more reliably from breakthrough (BT) data for a range of ionic 

strengths (IS, 40-150 mM) (Fig. 2A). The curvature and steepness of the breakthrough 

curve reflect protein uptake in the column, which takes longer to reach saturation capacity 

at lower ionic strength, indicating slower transport. At very low IS (40 mM) the 

breakthrough starts earlier than at 60 mM but also with slower protein uptake. At higher 

ionic strength, uptake is faster, so saturation capacity is reached in a shorter time, albeit 

with a lower saturation load because of the lower equilibrium capacity.  

 

3.2.1 Breakthrough data for estimation of surface diffusivity 

Simulated breakthrough curves at fixed ionic strength but varying surface diffusivity are 

shown in Fig. 2B, which further supports the assertion that this behavior can be modeled 

by including surface diffusion as a function of IS in the general rate model. Previous 

studies [34,44,45] also support the argument that the surface diffusivity indeed varies with 

ionic strength. However, estimation of the surface diffusivity from column data 

independent of other transport parameters remains a challenge.  

The surface diffusivity was estimated based on the curvature of the front of the BT curve. 

The uptake slope is shallower at low than at higher IS, presumably due to transport 

limitations. Changes in pore diffusivity can be ruled out as there is no change in porosity 

in the given salt range, although electrostatic exclusion [46] may contribute to a reduced 

pore diffusivity. The latter is unlikely to be the principal explanation, however, as the effect 

is seen even in adsorbents of which the pore size is too large for exclusion to be 
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significant. This leaves surface diffusion as the likely explanation, and indeed the 

dependence of surface diffusivity on ionic strength has also previously been observed 

and modeled [44,45]. The surface diffusion contribution to transport is enhanced at high 

surface coverage and hence the surface diffusivity can be estimated from the curvature 

of the front of the breakthrough curve. The variations in the shape of the curve with 

changing values of surface diffusivity can be  simulated by the model (Fig. 2B).  

 

3.2.2 Breakthrough data for estimation of isotherm parameters 

Estimation of the surface diffusivity is further complicated by the need also to estimate 

isotherm parameters, which for preparative chromatography models must be accurate 

even in the nonlinear (plateau) region. Even for feed concentrations as low as 1 mg/mL, 

typical isotherms at low IS will result in resin at the top of the column experiencing local 

saturation, so it would be informative to know the protein binding profile along the length 

of the column (Fig. 2C). In the (usual) absence of such data, a breakthrough curve 

represents an extrapolation of this behavior to the end of the column,  with protein loaded 

until the effluent concentration reaches a plateau, followed by a chase with wash buffer. 

In this section we show via simulations how the shape of the breakthrough curve is related 

to changes in various model parameters, using the colloidal isotherm.  

The transport (Ds) and isotherm (Ke and Bpp) parameters were fitted to the breakthrough 

data simultaneously using the inverse fit method [11]. This procedure was more effective 

if different weights were assigned to different parts of the breakthrough curve for its 

dependence on model parameters (section 2.7.1). Adsorption behavior is most sensitive 

to Ke (initial slope of isotherm) when either cpi or qi is close to zero. At low ionic strengths, 

adsorption is strong and transport-limited, so it is difficult to reach conditions for which qi  

is low except in the complete absence of protein locally. In contrast, a low cpi condition is 

readily encountered after protein loading is stopped and the column is washed with buffer, 

during which re-equilibration gives rise to continuous desorption and hence a finite 

effluent cpi that decreases with time, ultimately approaching zero. Consequently, the slope 

of this tail of the breakthrough curve is a measure of sensitivity to Ke. The drop in cpi is 

faster at lower than at higher ionic strength. This part of the BT curve is also not very 
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sensitive to the surface diffusivity value, which hence does not interfere with the 

estimation of Ke. 

The retention time of the front of the breakthrough curve is a more sensitive measure of 

protein binding capacity and hence more sensitive to the protein-protein interaction 

parameter Bpp. The sensitivity of the breakthrough shape to Ke and Bpp  is shown in Fig. 

2, with the maximum capacity kept fixed in Fig. 2D and Ke kept fixed in Fig. 2E.  

Therefore, to estimate the three parameters (Ke, Bpp, and Ds), we use breakthrough data, 

but in three distinct regions: (1) The retention of the front is sensitive to Bpp, (2) the 

curvature of the tail is sensitive to Ke, and (3) the curvature of the front is sensitive to Ds  

given that the pore diffusivity is assumed to be constant.     

 

3.3 Lysozyme on Capto SP ImpRes  

Using the colloidal isotherm (Eq. 5) to model lysozyme behavior on Capto SP ImpRes 

provides an informative application of the approach outlined above. The fitting parameters 

Ke, Bpp, and Ds were estimated from isocratic breakthrough data at five different IS values 

following the procedure described in section 3.2. Other parameters, specifically the Debye 

screening parameter and the pore diffusivity, were calculated from theoretical correlations 

(Eqs. 9 and 12 respectively). The phase ratio for Capto ImpRes was estimated from Eq. 

8, as no literature data were available. The maximum binding capacity required in Eq. 8 

was calculated from the area above the breakthrough curve at 30 mM IS until it reached 

its plateau. With these calculated parameters and optimal fits of Ke, Bpp, and Ds for each 

IS, the simulated breakthrough curves, along with experimental data, are shown in Fig. 

3A.  

The isotherm parameters are plotted against ionic strength (at pH 7.0) in Fig. 3B, with 

both showing a monotonic decrease consistent with weakening protein-surface and 

protein-protein interactions with increasing IS. Both Bpp and Ke fit a power-law form as a 

function of IS (Eqs. 10 and 11). The 3D isotherm surface, calculated from the estimated 

parameters and showing dependence on both the mobile-phase protein concentration 

and IS, is shown in Fig. 3C. The fitted surface diffusivity, Ds, was found to be negligible in 
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the 30-200 mM range of IS but increased significantly in the 200-400 mM range and was 

found to depend exponentially on IS (Fig. 3E).  

The gradient elution behavior predicted using this set of parameters is shown in Fig. 3D 

along with the corresponding experimental data; all the predictions agree well with the 

data even though none of the elution data were used for parameter estimation. The model 

was also verified for different gradient slopes (data not shown). It is interesting to observe 

that with increasing load, a kink started to appear on the front of the gradient elution peak 

and is also very well captured by the model. This behavior may result from the shape of 

the isotherm curve with changing IS (Fig. 3C); this is discussed in comparison to the near-

Gaussian elution peaks seen for mAbs in section 3.6. 

 

3.4 MAb on Fractogel: Deviations from colloidal isotherm model 

Initial efforts to model breakthrough data for the mAb on Fractogel did not provide a 

satisfactory quality of fit. Specifically, for higher IS (130-175 mM) the breakthrough front 

could be captured accurately but values of Ke and Bpp that could match the slope of the 

tail of the breakthough curve could not be obtained reliably. To ensure that the 

discrepancy observed was not due to errors in values of kinetic or transport parameters, 

the model was extensively tested with these parameters varied in a reasonable range, 

but none of these produced the desired fit. The best fits obtained along with experimental 

data for the mAb at pH 5.0 are shown in Fig. 4A. The deviations, although not very large, 

are more pronounced at pH 5.0 than at pH 5.5 or 6.0, probably because of the higher IS 

range of interest for the mAb at lower pH. Although the deviations could be ameliorated 

by optimizing the fits in the tails of the BT curves, the resulting Bpp values showed an 

upturn at higher IS (cf. Fig. 3 for lysozyme) that complicated column simulations.  

The colloidal isotherm formulation [17,18] is based on an idealized physical model in 

which protein adsorption is modeled as occurring in a monolayer of hexagonally-ordered 

spheres. The colloidal isotherm, like any other, incorporates various idealizations, and its 

application especially in the present system, involving the highly-anisotropic mAb shape, 

represents use of the mathematical isotherm form more than the physical idealization. In 
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that sense the model may not adequately capture the details of the experimental isotherm 

shape, to which column model predictions are highly sensitive. Parametric exploration 

showed that improved fits could be obtained by treating the screening parameter, , as a 

constant for a given system instead of using the explicit IS dependence given in Eq. 9. 

Although larger deviations were seen only at higher IS, where the Debye screening length 

, calculated from Eq. 9, is < 1 nm, the constant- formulation was used for all mAb 

modeling. 

The screening parameter, , was therefore treated as adjustable for a given system and 

was fitted to breakthrough data along with the other isotherm parameters (Ke and Bpp). 

The model was able to the fit data very well for screening parameter values  < 0.4 nm-1 

( > 2.5 nm) for higher ranges of IS (> 150 mM) and < 1.33 nm-1 ( > 0.75 nm)  for 

lower salt ranges (< 100 mM). Both the use of constant values of  generally as well as 

the decrease in the screening parameter with increasing IS are inconsistent with the 

tenets of colloid theory. Although it is possible that there is a physical explanation for 

these observations, it is reasonable instead to regard the isotherm model simply as a 

mathematical formalism, as noted above. 

Since reasonable fits were obtained for not only one value of  but for a range (1.5 to 

4.5 nm) of values, estimating a single set of parameters for an isotherm becomes 

somewhat arbitrary. The simplest solution was to keep the screening parameter fixed at 

one value for different ionic strengths, with a value slightly lower than that calculated from 

the Debye relation (Eq. 9) found to be most effective. This method may not be universal 

but provides reasonable trends for the other parameters and hence a working model that 

we have found effective for mAbs on different stationary phases. To obtain a sense of the 

best value of , breakthrough curves were fitted for values of  spaced at intervals of 

0.5 nm, with adjustment of the other two isotherm parameters, Ke and Bpp. The residual 

plot (RMSD) is shown in Fig. 4B and the trends in fitted values of Ke and Bpp in Fig. 4C 

and D respectively. The latter two plots both show similar monotonically-decreasing 

trends (cf. Fig. 3B), albeit with appreciable differences in values. A final value of of 2.5 

nm was found to be best based on the minimum in the residual for the entire range of IS 

and pH. 
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3.5 MAb on Fractogel: transport properties and porosity 

Beyond the isotherm parameters, the shape of the breakthrough curve is also affected by 

transport properties. Furthermore, the pore diffusivity estimate depends directly on the 

particle porosity, ɛp (Eq. 12), and because the porosity affects the phase ratio and hence 

the amount of adsorbed protein, the estimated value of the surface diffusivity also 

changes with ɛp. Initial estimates of ɛp were taken from literature values that were 

estimated from inverse size exclusion chromatography (iSEC) data [38], so some 

uncertainty remains in the values obtained. For Fractogel specifically, the presence of 

tentacles adds uncertainty to how the porosity affects the physical behavior. 

The breakthrough curves were fitted using the isotherm parameters and the surface 

diffusivity as adjustable parameters, but the porosity was also fine-tuned from the initial 

estimate.  This helped predominantly in reducing the residual error in fitting simulated 

breakthrough curves at low IS, particularly in the plateau region, where the column 

reaches the saturation limit. The porosity was the only realistic parameter that could be 

changed (up to ± 25%) to improve the fit in this portion of the breakthrough curve.  

To further validate the estimated values of the surface diffusivity and the porosity, the 

predictive capability was tested for breakthrough curves at two additional flow rates (84 

and 300 cm/hr). The parameters obtained from the fit at the base flow rate of 150 cm/hr 

were able to provide reasonable predictions of the breakthrough curves at the other two 

flow rates while keeping all other model parameters identical (Fig. 5), validating the utility 

of the correction to the porosity value.  

As discussed previously, the surface diffusivity depends on IS. The functional form of this 

dependence obtained for all pH values was exponentially increasing and described by 

the two-parameter form  

Ds = Dsf exp(C0 Dsc)        (13) 

where Dsf and Dsc are fitted parameters. This functional form can be used to estimate the 

value of the surface diffusivity in cases for which breakthrough data are partial or 
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incomplete. The functional relation can also be useful for fitting breakthrough data at 

higher IS, where the effect of the surface diffusivity on the curvature of the uptake profile 

is confounded with the effect of Ke. In this limit there is also less impact of Bpp than at 

lower ionic strength or at higher protein coverage.  

 

3.6 Parameter estimates and model predictions for mAb on Fractogel  

Combining the approaches described in sections 3.5 and 3.6 leads to the breakthrough 

calibration data at pH 5.5 shown in Fig. 6A, where a constant screening length value of 

2.5 nm was used. The parameter values obtained by fitting an individual breakthrough 

curve (i.e., at one set of conditions) were also adjusted based on validation assessment 

from the elution peak obtained after the same breakthrough curve. The estimates at 

individual conditions were then fitted to more global forms as a function of IS (Eqs. 10 

and 11), with iterative adjustments made to obtain a smooth trend with power-law or 

exponential dependence. Once the final values were obtained, confidence intervals (CI) 

were calculated (section 2.7.1) and it was observed that in most cases the values 

obtained using the global correlations remained within the CI range for individual points. 

For the breakthrough curves at pH 5.5 (Fig. 6A), the dynamic binding capacity at low salt 

(44 mM) is lower than at higher IS (95 mM). The reason is apparent in the 3D isotherm 

shape (Fig. 6G), namely the local maximum on the surface with changing IS, i.e., a local 

maximum in the equilibrium binding capacity. The fitted values of Ke and Bpp (Fig. 6B, C) 

and of Ds (Fig. 6E) as a function of IS show that both the Bpp and Ds trends superimpose 

if plotted against Ke (Fig. 6D, F). The Bpp dependence is reasonable given that both 

protein-surface interactions and protein-protein interactions are predominantly 

electrostatic and depend on the protein charge and on solution conditions. The relation 

between Ds and Ke has been discussed previously [34, 44].  

The elution predictions were validated for a wide range of conditions, for which a few 

selected profiles are shown in Fig. 7. The final model was also able to capture partial 

(e.g., Fig. 7C) and complete breakthrough in the elution profiles with a single set of unique 

parameters. The effects of the gradient slope, flow rate, and load capacity are accurately 
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captured by the model. Predictions for other conditions (pH 5.0 and 6.0) are provided in 

the supplementary information and show similar performance in predicting elution 

behavior, including for step elution. No kinks were observed in the elution peak profiles 

with higher loads for mAbs, as was present for lysozyme on Capto SP ImpRes (Fig. 3D). 

The likely reason is the difference in isotherm shapes, as the 3D isotherm surface for 

lysozyme on this resin (Fig. 3E) was monotonically decreasing with IS, which is different 

to the case for the mAb on Fractogel (Fig. 6G - I).  

 

3.7 pH dependence  

The pH is an important process variable in determining the robustness and load 

performance of mAbs on IEX resins. The model described above does not explicitly 

include the effect of pH and hence cannot be used to predict minor perturbations during 

the process. To overcome this limitation, the pH effect was incorporated in the model by 

parameterizing Ke and Bpp as a function of pH in addition to the ionic strength 

dependence. The functional form of the pH dependence was determined by fitting the 

breakthrough data separately at pH 5.0, 5.5 and 6.0 for different ionic strengths and 

combining them in the form 

ln(𝐾𝑒) = 𝛼[𝐶0
𝛽

+  𝛾][𝑝𝐻𝛿]        (14) 

where 𝛼, 𝛽, 𝛾  and 𝛿 are fitting parameters. Eq. 14 fits the ln Ke data (Fig. 8A) well except 

for a slight deviation in the fit at higher salt and pH, but this does not significantly affect 

elution predictions because these are essentially non-binding conditions. 

Bpp is linearly related to ln Ke at higher binding affinities but not at lower affinities; the latter 

deviations are evident at higher pH and ionic strength in results shown earlier (Fig. 6D). 

However, for weaker binding the contribution of protein-protein interactions would not play 

a significant role due to lower coverages, so Bpp can be assumed to depend linearly on 

ln Ke more generally. For more accurate predictions, a power-law formalism similar to that 

for Ke (Eq. 14) in terms of C0 is effective:  

𝐵𝑝𝑝 = 𝛼′ [𝐶0
𝛽′

+  𝛾′] [𝑝𝐻𝛿′
]       (15) 
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As discussed in the previous section Ds depends explicitly on Ke, so a separate equation 

is not required in terms of IS or pH but only in terms of Ke [44],  

Ds = d1 (ln Ke)d
2
           (16) 

where d1 and d2 are power-law parameters. 

 

3.8 Isotherm model for mAb on other resins  

Model calibration and validation were also performed on a variety of other resins. To 

examine differences on a family of related resins, the results on Fractogel were 

augmented by corresponding ones on custom Fractogel variants with low (395 µeq/g) 

and high ligand densities (645 µeq/g) relative to the standard version (541 µeq/g) [47]. 

Isotherm parameters (Ke and Bpp) fitted to breakthrough curves at pH 5.0 and 5.5 are 

compared in Fig. 9A-D for the two Fractogel variants and the standard version. The higher 

ligand-density resin showed a higher binding affinity and greater protein – protein 

repulsion as expected. The ln Ke and Bpp values for different ligand densities, at both pH 

5.0 and 5.5, converge with increasing IS, but the ln Ke curves are more nearly parallel for 

the two pH values. This indicates that ligand density plays a more important role at lower 

ionic strength, irrespective of pH, but the effect is attenuated at higher ionic strength. The 

behavior of the protein-protein interaction parameter, Bpp, is different between pH 5.0 and 

pH 5.5, which is not observed for Ke (Fig. 9B, D). Although the trends in Bpp are roughly 

similar, the behavior at the higher pH, where the curves for the standard and high ligand-

density resins almost overlap, is not seen at the lower pH. The surface diffusivity values, 

however, all superimpose as a function of Ke and show a strong correlation irrespective 

of pH and ligand density (Fig. 9G).  Breathrough and elution predictions and fits are 

provided in the supplementary information.  

To explore a wider range of resin architectures, parameters for the mAb on SP Sepharose 

FF, Capto S, and Toyopearl SP650 at pH 5.0 are presented in Fig. 9E-F. The trends 

observed for these resins are similar to those for Fractogel, but both the binding affinity 

and protein-protein interaction parameter are lower, which may be due to differences in 

ligand density, phase ratio or other resin properties. The plots of ln Ke vs. IS are almost 
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parallel, indicating that they reflect characteristics of the protein [48]. The surface 

diffusivity values again all follow a power-law function of binding affinity irrespective of 

resin backbone/surface (Fig. 9H). This implies that the model formulation with respect to 

binding affinity, protein-protein interaction, and surface diffusivity reflects a universal trend 

and form. This also demonstrates that the method proposed here for parameter 

estimation can work equally well for a wide variety of resins and pH conditions. 

 

3.9 Model applications and limitations 

The methods developed in this work aim to provide a modeling framework for a wide 

range of operating conditions, including pH, flow rate, gradient, and overload effects. The 

overload element will also be useful for multicolumn setups, where the column capacity 

has to be established accurately. Overloading is also important in displacement and 

frontal chromatography, where multicomponent effects also enter the picture. In general, 

in most processes the column capacity is underutilized (~80%), so the benefits of 

displacement effects are often overlooked. Operating consistently at higher loads may 

reduce process robustness in the absence of accurate models to capture protein leakage 

due to changes in buffer composition and flow rate. Since the models developed here 

include all these important process parameters, more consistent usage of the full column 

capacity may be aided by adequate model capabilities. 

The model here includes detailed transport effects, including pore and surface diffusion 

explicitly, in a fashion consistent with the findings of direct investigations of protein 

chromatographic transport; including these effects and their dependence on operational 

variables can help to predict transport limitations that are observed mainly at low ionic 

strengths. Models for ion-exchange chromatography are incomplete without including the 

effect of pH, as column behavior is much more sensitive to this than to ionic strength, at 

least for large molecules like mAbs. Accurate predictions of pH dependence will help to 

model process sensitivity to variations in solvent buffer composition in the process 

environment. The colloidal model used here segregates the protein-resin and protein-

protein interaction parameters explicitly, which can be useful in troubleshooting as well 

as in extracting mechanistic insights, which are often obscured in other isotherm models. 
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This could thus help to elucidate protein behavior on the column based on the 

physicochemical and surface properties of the protein and the resin surface.  

The biggest challenge in developing an effective model is not only in ascertaining the right 

formalism for the isotherm and transport but also in estimating the model parameters. 

Here we have shown an effective route to solve this problem with the use of the 

breakthrough curve, but this requires a fairly large amount of protein that, in many cases, 

would not be available for a process in the early development stage. However, as models 

for more proteins are generated, e.g., for different mAbs, a general trend can be 

established that leads to informative heuristics, and a full set of breakthrough curves may 

not be necessary. The model parameters may then be bounded in fairly narrow domains, 

and by using inverse fitting in gradient elution or machine learning methods, an accurate 

data model can be constructed.  

In the approach described here we have estimated some parameters, e.g., the pore 

diffusivity, from theoretical correlations and then obtained others, e.g., the surface 

diffusivity, by fitting the breakthrough curves. The a priori estimates are susceptible to 

errors, such as the effect of particle porosity on pore diffusivity discussed earlier. In 

addition, the theoretical models used for such estimates may include idealizations from 

which the real physical system deviates in a way that would be difficult to account for 

accurately. For example, the colloidal model accounts for protein-protein interactions 

using a model of a monolayer of spheres in a hexagonal array, a very crude approximation 

of adsorbed mAb. Such idealizations may be compensated for in part by adjustable 

parameters but we have also used other adjustments empirically, such as using a 

constant value of the screening parameter. The value of 0.4 nm-1 was used throughout 

the work to calibrate the breakthrough data, but other values > 0.22 nm-1 also produced 

accurate fits, albeit with higher values of and sensitivity to the binding affinities estimated 

in the low ionic strength range. Although this includes some arbitrariness, we feel that it 

is a reasonable approach given the complexity of the mAb molecular structure and the 

resin surface. The end result is a working and extensively-verified model with reasonable 

and physically-meaningful parameter values, producing true and accurate predictions 

sufficiently robust to capture changes in flow rate, load, pH and other operating 
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parameters. We were able to model the different peak shapes observed for the data 

presented in section 3.1, elucidating the importance of incorporating detailed transport 

and isotherm characteristics for protein chromatography modeling. 

 

4. Conclusions 

The general rate model is widely established for rigorous modeling of chromatographic 

behavior. We have shown that the specific implementation used here, with incorporation 

of the colloidal isotherm model and both pore and surface diffusion, captures the features 

of isocratic and gradient elution peak shape to a very high degree of accuracy. A key 

element is the fitting of breakthrough curves to obtain estimates of model parameters 

independently of the elution data, including revelation of relationships among model 

parameters by the shape of the protein front as it migrates through the column, as a 

function of binding affinity. The resulting model is capable of accurately predicting loading 

and elution for pulse to saturated loads using the same set of parameters. The transport 

predictions were sufficiently accurate to capture the peak shape and spread for different 

loads and flow rates. The methodology developed in this work, along with the 

implementation of the colloidal model inclusive of pH and ionic strength, will help the 

application of models for preparative chromatography in industrial applications. 
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Figure captions 
 

Fig. 1.  Elution peak shape for different systems with increasing loadings, approaching 

the saturation capacity. (A) Lysozyme on SP Sepharose FF, (B) mAb on 

Sepharose FF, (C) mAb on Fractogel SO3
-, (D) lysozyme on Capto ImpRes SP, 

(E) cytochrome c on Fractogel SO3
-, (F) lysozyme on Fractogel SO3

-. 

Fig. 2.  (A) Breakthrough data for the mAb with changing IS on Fractogel SO3
-
. (B) 

Model simulation of a breakthrough curve with varying surface diffusivity (10-12 

– 10-14 m2s-1).  (C) Model simulation of breakthrough profiles for a mAb inside 

the column (along the length). (D) Model simulation of breakthrough profile for 

fixed Bpp but varying Ke.  (E) Model simulation of breakthrough profile for 

varying Bpp but fixed Ke.  

Fig. 3.  Lysozyme on Capto SP ImpRes. (A) Breakthrough fits for model simulations. 

(B) Variation of Ke and Bpp with IS. (C) Variation of Ds with IS.  (D) Comparison 

of gradient elution experiments and predictions. (E) Plot of calculated isotherm 

from model. 

Fig. 4.  (A) Breakthrough data fits using screening parameter calculated from Eq. 9. (B) 

Residual plot for different screening lengths (nm) for breakthrough data fits for 

varying IS. (C) and (D) Variations of Ke and Bpp with screening length (nm) for 

breakthrough data at different IS. 

Fig. 5.  Breakthrough profile predictions for the mAb at different flowrates. (A) 70 mM 

IS. (B) 100 mM IS. 

Fig. 6.  MAb on Fractogel SO3
-.  (A) Breakthrough data fits for model simulations at pH 

5.5. (B - E) Ke, Bpp, Ds trends with varying IS. (F) Ds trend as a function of Ke at 

pH 5.5.  (G - I) Plots of isotherms calculated from model for pH 5.5, 5.0 and 6.0. 

Fig. 7.  Prediction of elution profile for the mAb on Fractogel SO3
-. (A) 50% load, 150 

cm/h; (B) 75% load, 150 cm/h; (C) >100% load, 150 cm/h; (D) 75% load, 84 

cm/h; (E) 50% load, 300 cm/h; (F) >100% load, 300 cm/h; (G) partial 

breakthrough at 90 mM IS; (H) full breakthrough at  60 mM IS; (I) full 

breakthrough at 80 mM IS. 
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Fig. 8.  Universal fits of calibrated values of parameters for diffferent pH and IS for Ke 

and Bpp for mAb on Fractogel SO3
-  using Eq. (14) and (15).  

Fig. 9.  Ke and Bpp trends with IS for the mAb.  (A-D) High (hi), standard (-), and low 

ligand-density variants of Fractogel SO3
-. (E) and (F) SP Sepharose FF (SPFF), 

Toyopearl SP650M (TPS), Capto S (CPS) and Fractogel SO3
- (-). (G) and (H) 

Ds variation with Ke for the mAb on different resins.   
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